Measuring the proper motion of Andromeda

Impact of Gaia data on studies of the Andromeda system

Nicolas Martin — Observatoire astronomique de Strasbourg (ObAS/CNRS) & MPIA (Heidelberg) (@nfmartin1980)

Background: Gaia EDR3 flux image

Why measure the proper motion of Andromeda?

- The satisfaction of knowing how we are m inhabitant of the Local Group
- Inferring how the past and future of the Local Group → if large tangential motion, a Local Fly-By instead of a Local Group. Refine measurements of the mass of the Local Group
- Proper motion impossible to measure without strong (dynamical) assumptions until recently
- A lot of wonderful work to get a direct measurement/inference over the last 10-15 years but it's very hard!
- But 10 $\mu as/yr \sim 40$ km/s at the distance of M31 (~800 kpc)

• The satisfaction of knowing how we are moving wrt our closest large neighbor and sister

- Using previous deep photometry in 3 HST fields of the M31 outskirts
- Using thousands of (faint) stars
- 5–7 yr baseline
- Ideally would use QSOs for reference **but** not enough in ACS/WFC3 fields...
- Use galaxy centers for reference frame **but** they are extended...

- Using previous deep photometry in 3 HST fields of the M31 outskirts
- Using thousands of (faint) stars
- 5–7 yr baseline
- Ideally would use QSOs for reference **but** not enough in ACS/WFC3 fields...
- Use galaxy centers for reference frame **but** they are extended...

Nicolas Martin — Observatoire astronomique de Strasbourg (ObAS/CNRS) & MPIA Heidelberg | Gaia — Beyond the Milky Way

Sohn et al. (2012)

- Using previous deep photometry in 3 HST fields of the M31 outskirts
- Using thousands of (faint) stars
- 5–7 yr baseline
- Ideally would use QSOs for reference but not enough in ACS/WFC3 fields...
- Use galaxy centers for reference frame but they are extended...

• Results for the 3 individual fields:

Nicolas Martin — Observatoire astronomique de Strasbourg (ObAS/CNRS) & MPIA Heidelberg | Gaia — Beyond the Milky Way

(0.1 mas/yr ~ 400 km/s)

Sohn et al. (2012)

- **But** the stars in each field have their own peculiar motion wrt the M31 center of mass...
 - Rotation of the disk
 - Motion of Giant Stream ullet

- **But** the stars in each field have their own peculiar motion wrt the M31 center of mass...
 - Rotation of the disk •
 - Motion of Giant Stream •
- (Model-dependent) corrections for those yield:

		Spheroid Field	Disk Field
	HST PM measurements		
v_W (HST)	$({\rm km}~{\rm s}^{-1})$	-167.2 ± 60.2	-194.6 ± 89.8
v_N (HST)	$({\rm km}~{\rm s}^{-1})$	-137.2 ± 56.2	-38.0 ± 89.1
	M31 COM motion (<i>H</i>	HST PMs + internal-kinemati	cs model + viewing perspecti
v_W (COM)	$({\rm km}~{\rm s}^{-1})$	-179.1 ± 64.1	-158.0 ± 92.4
v_N (COM)	$({\rm km}~{\rm s}^{-1})$	-122.6 ± 60.0	-0.5 ± 91.3

• The M31 system is so big on the sky that the radial velocity of satellites includes a significant component of the center of mass velocity

Martin et al. (2013)

• The M31 system is so big on the sky that the radial velocity of satellites includes a significant component of the center of mass velocity

Milky Way

van der Marel et al. (2012)

- The M31 system is so big on the sky that the radial velocity of satellites includes a significant component of the center of mass velocity
- There are now 40+ satellite dwarf galaxies around M31.
- Can tease out the (tangential) motion of M31 from the line-of-sight velocities of the ensemble population of satellites

- The M31 system is so big on the sky that the radial velocity of satellites includes a significant component of the center of mass velocity
- There are now 40+ satellite dwarf galaxies around M31.
- Can tease out the (tangential) motion of M31 from the line-of-sight velocities of the ensemble population of satellites

Salomon et al. (2016)

Ο

- The M31 system is so big on the sky that the radial velocity of satellites includes a significant component of the center of mass velocity
- There are now 40+ satellite dwarf galaxies around M31.
- Can tease out the (tangential) motion of M31 from the line-of-sight velocities of the ensemble population of satellites

Global state pre-Gaia DR2

Caveats

HST measurement

- Very small fields
- Using (extended) galaxies for reference because no/not enough QSOs
- Need to correct for bulk motion of individual fields around M31 (disk rotation, stream,...)
- Lots of averages...

Satellite motion inference

- Evidence for structure in M31 satellites
 - Plane of satellites
 - Anisotropic distribution
 - Pairs of satellites
- Are all dwarf galaxies satellite of M31 (M33 satellites? Unbound systems?)

Enters Gaia DR2

- Much shallower data...
- But much larger field of view
- Can rely on bright super-giants/young stars in the disk of M31!

Enters Gaia...

- Much shallower data...
- But much larger field of view •
- Can rely on bright super-giants/young stars in the disk of M31!

Enters Gaia...

- Much shallower data...
- But much larger field of view •
- Can rely on bright super-giants/young stars in the disk of M31!

Gaia measurements

Nicolas Martin — Observatoire astronomique de Strasbourg (ObAS/CNRS) & MPIA Heidelberg | Gaia — Beyond the Milky Way

• Assuming a 3-parameter model ($\mu_{\alpha}, \mu_{\delta}, v_{rot}$), and inference (not fit!) from 1k–2k stars

Gaia collaboration, Lindegren et al. (2021)

Gaia collaboration, Lindegren et al. (2021)

What about systematics?

- We know Gaia has (small) proper motion systematics. At least a few (10s?) µas/yr
- Has improved with EDR3, but still present. Needs to be taken into account...
- Determination of mean "local" correction:

The current state of affairs

Nicolas Martin — Observatoire astronomique de Strasbourg (ObAS/CNRS) & MPIA Heidelberg | Gaia — Beyond the Milky Way

The current state of affairs

Nicolas Martin — Observatoire astronomique de Strasbourg (ObAS/CNRS) & MPIA Heidelberg | Gaia — Beyond the Milky Way

The current state of affairs

Nicolas Martin — Observatoire astronomique de Strasbourg (ObAS/CNRS) & MPIA Heidelberg | Gaia — Beyond the Milky Way

Where to

- DR4 will be better... but not before the end of 2025. What can we do in the meantime?
- Squashing systematics by refining the QSO correction is likely key

Distribution of QSOs used for Gaia EDR3 reference frame

Nicolas Martin — Observatoire astronomique de Strasbourg (ObAS/CNRS) & MPIA Heidelberg | Gaia — Beyond the Milky Way

Distribution of blue stars (in M31 disk)

Where to from here?

- DR4 will be better... but not before the end of 2025. What can we do in the meantime?
- Squashing systematics by refining the QSO correction is likely key
- Why the structure?
 - Far from M31, using photometric selection of QSO •
 - Near M31, too much contamination for this selection; using spectroscopic quasars instead
- Can we improve the catalogue?

How to improve the QSO catalogue?

- QSO photometry varies differently from bulk of variable stars (stochastic vs. periodic) How point-source varies in Pan-STARRS1 \rightarrow catalogues of QSOs (and RRLyr)

How to improve the QSO catalogue?

- How point-source varies in Pan-STARRS1 \rightarrow catalogues of QSOs (and RRLyr)
- PS1 catalogue can be improved/replaced with the **Gaia Andromeda Photometric Survey**
 - Photometric time series for 1.2 millions sources with 5.5° of M31
 - Space-based observations, so fewer issues • than with PS1 near M31 (e.g., crowding)?
 - Exquisite Gaia photometry → more accurate variability measurements
 - + confirmation with wide-field multi-object spectroscopy (e.g. WEAVE)

QSO photometry varies differently from bulk of variable stars (stochastic vs. periodic)

75 70 65 60 55 50 30 25 20 15 10

Measuring the proper motion of M31

- It's incredibly hard!
- A lot of **beautiful work** was done over the years using HST, satellites, and now Gaia • It's likely none are perfect and they all have (different?) systematics
- But there's a clear path forward with **3 independent avenues**:
 - HST with longer baselines and segue into JWST era (20–30 year baseline?) •
 - Refine **satellite-based inference** with increasing sample of satellite dwarf galaxies and globular clusters (esp. more distant)
 - Better Gaia-based inference by reducing the systematics around M31 with a more • populated QSO reference frame