Magellanic clouds – dynamics and evolutionary phases

Mercè Romero-Gómez, ICCUB-IEEC

COST MW-Gaia WG1/WG4 Workshop Gaia - Beyond the Milky Way September 28th, 2022

Motivation

- Full structure and dynamical studies in barred galaxies in theoretical models and N-body simulations
- Partial information for the Milky Way and external galaxies until Gaia DR3
- Structure requires 3D: positions and accurate distances
- Dynamics requires 6D: positions, distance, proper motions and line-ofsight velocities
- For a statistically large sample, with homogeneous sky coverage

Goals

- Use of Gaia astrometry and photometry to classify LMC stars
- Use of 3D kinematic maps to characterise the LMC disc:
 - Structure: angular orientation, length of the galactic bar
 - Dynamics: resonances, pattern speed of the bar and/or spiral arm
- Study the dependence on different stellar populations

Outline

- Updates on the data selection: LMC/MW separation
- Very basic galactic kinematics and dynamics concepts
- Gaia (E)DR3 and the Large Magellanic Cloud:
 - General kinematic maps
 - Kinematic profiles of the different evolutionary phases

Gaia Collaboration, Luri, Chemin+2020 Jiménez-Arranz, Romero-Gómez, Luri+2022 (under review)

LMC/MW classification

Training sample: Gaia Object Generator (GOG) [LMC + MW]

Training sample: Gaia Object Generator (GOG) [LMC + MW]

Training sample: Gaia Object Generator (GOG) [LMC + MW]

Classifier: Neural Network

Classifier: Neural Network

Also tested:

- 1) Logistic Regression
- 2) K-Nearest
 Neighbours
 3) Random Forest

Classifier: Neural Network

Inputs:

- Position (α, δ)
- Parallax and its uncertainty (π, σ_{π})
- Proper motion and their uncertainties (μ_{a*} , μ_{δ} , $\sigma_{\mu a*}$, $\sigma_{\mu \delta}$)
- Gaia photometry (G, G_{BP} , G_{RP})

Output:

- Probability P of being a LMC star. P close to 1 (0), highly likely to be of the LMC (MW).

Classifier: Neural Network

Inputs:

- Position (α, δ)
- Parallax and its uncertainty (π , σ_{π})
- Proper motion and their uncertainties (μ_{a*} , μ_{δ} , $\sigma_{\mu a*}$, $\sigma_{\mu \delta}$)
- Gaia photometry (G, G_{BP} , G_{RP})

Output:

- Probability P of being a LMC star. P close to 1 (0), highly likely to be of the LMC (MW).

Classifier: Neural Network

Inputs:

- Position (α, δ)
- Parallax and its uncertainty (π , σ_{π})
- Proper motion and their uncertainties (μ_{a*} , μ_{δ} , $\sigma_{\mu a*}$, $\sigma_{\mu \delta}$)
- Gaia photometry (G, G_{BP} , G_{RP})

Output:

- Probability P of being a LMC star. P close to 1 (0), highly Jikely to he of the LMC (MW).

LMC clean samples:

-60Proper motion selection classification -65 و [deg] 2 [deg] (Gaia Collaboration, Luri+20) -75 -80 -65 Complete sample: و [deg] 2 [deg] P = 0.01-75 -80 -65 Optimal sample: و [deg] 10-70 P = 0.52-75 -80 Truncated Optimal -65 sample: و [deg] 2 [deg] P = 0.52G < 19.5 mag -75 -80

MW

10³

10² Counts

10¹

 10^{0}

103

10² Counts

 10^{1}

100

10³

10² Counts

10¹

10⁰

10³

10² Counts

 10^{1}

100

100

90

80

 α [deg]

70

60

LMC/MW classifier	Proper motion selection classification (Gaia Collaboration, Luri+20)		LMC -60 -65 -65 -70 -75	MW 10 ³ 10 ² Counts 10 ¹
LMC clean samples: Complete sample:		-80 -65 -70	10 ⁰ 10 ³ 10 ² Out	
Stars classified as LMC	LMC Cepheids (4 467)	LMC RR-Lyrae (21 271)	LMC StarHorse (985 173)	MW StarHorse (2 940 282)
Proper motion selection Neural Network (Complete) Neural Network (Optimal) Neural Network (Truncated Optimal)	4 366 (97.7%) 4 407 (98.7%) 4 160 (93.1%) 4 160 (93.1%)	18 673 (87.8%) 20 223 (95.1%) 17 860 (84.0%) 14 750 (69.3%)	970 173 (98.5%) 970 719 (98.5%) 832 733 (84.5%) 832 733 (84.5%)	704 932 (24.0%) 722 750 (24.6%) 627 619 (21.3%) 627 619 (21.3%)
MW: [2 940 282]	Truncated Optimal sample: P = 0.52 G < 19.5 mag		$ \begin{bmatrix} -80 \\ -65 \\ 0 \\ -70 \\ -75 \\ -80 \\ 100 \\ 90 \\ \alpha \\ [deg] \\ \alpha \\ [deg] \\ \alpha \\ [deg] $	10 ⁰ 10 ³ 10 ² Out 10 ² Cut 10 ¹ 10 ¹ 10 ¹ 10 ¹ 10 ¹

Galactic kinematics and dynamics

SIMPLE MODELLING

ORBITS IN AXISYMMETRIC DISC GALAXIES

All the motion is along the tangential direction: $V_{\phi} = V_{circ} \leftarrow$ From the rotation $V_R = 0$

ORBITS IN BARRED GALAXIES

Athanassoula+1983

Contopoulos & Papayannopoulos 1980

LMC

Skokos, Patsis & Athanassoula 2002

Radial motion

Tangential motion

KINEMATIC MAPS IN SIMULATED BARRED GALAXIES

Radial motion

Residual Tangential motion

KINEMATIC MAPS IN SIMULATED BARRED GALAXIES

GAIA (E)DR3 and the Large Magellanic Cloud

Gaia Collaboration, Luri, Chemin+2020

Jiménez-Arranz, Romero-Gómez, Luri+2022 (under review)

Kinematic maps in the LMC

- New sample selection based on Neural Networks: complete and optimal samples
- Positions, proper motions and line-of-sight velocities from Gaia DR3
- New coordinate transformation allowing to infer:
 - 3D velocity maps based on proper motion only or proper motion + line-of-sight velocities
- Velocity profiles in the LMC frame (removing bulk motion and perspective effect): radial, residual tangential and vertical velocity maps

Kinematic maps in the LMC

Gaia EDR3 data: no line-of-sight velocity.

Kinematic maps in the LMC

Radial velocity

Residual tangential velocity

-2.5

-7.5

Confirmation of the quadrupole trend in the bar. Definitely asymmetric.

LMC KINEMATIC PROFILES BY EVOLUTIONARY PHASES

Gaia Collaboration, Luri, Chemin+2020

LMC KINEMATIC PROFILES BY EVOLUTIONARY PHASES

Gaia Collaboration,Luri, Chemin+2020

LMC KINEMATIC PROFILES BY EVOLUTIONARY PHASES

Jiménez-Arranz+2022

Gaia Collaboration,Luri, Chemin+2020

Structure and dynamics with Gaia DR3

- Now it is the time to check dynamical models with the Large Magellanic Cloud, to study pattern speed of nonaxisymmetric components, nature of the spiral arms.
- Different evolutionary phases thanks to photometry.
- Line-of-sight velocities allow 3D kinematic maps, interesting vertical velocity component.