Variations of the stellar initial mass function in and between galaxies

Sami Dib MPIA, Heidelberg

IMF clusters ≠ IGIMF (galactic) ≠ PDMF (galactic)

PDMF-The Galactic field

The local PDMF of the MW

Parravano+ (2011)

A time averaged Galactic IMF

Dib & Basu (2018)

G12NP-S

20.0

Clusters

Statistics matters

The Milky Way forms ~10⁴-10⁵ clusters every 10-12 Myrs.

Dib et al. (2017)

Bastian et al. (2010)

Evidence against universality

 $\xi(\log M) = kM^{-\Gamma} \left\{ 1 - \exp\left[-\left(\frac{M}{M_{ch}}\right)^{\gamma + \Gamma} \right] \right\}$

Dib 2014

Evidence against universality

 \rightarrow Measure the fractions of single and lonely O stars

Evidence against universality

 \rightarrow Measure the fractions of single and lonely O stars

Evidence against universality

Lim et al. (2015), Weisz et al. (2015) Dib (in prep) Massey 2003

The IGIMF- galaxy-wide IMF

The galaxy-integrated IMF: IGIMF

$$\Phi_{IGIMF}(M_*) = \int_{0}^{\infty} \varphi_{IMF}(M_*) \varsigma(M_{cl}) dM_{cl}$$

Weidner & Kroupa (2004), ++ several papers by Kroupa's group

The galaxy-integrated IMF: IGIMF

The galaxy-integrated IMF with IMF variations

$$\Phi_{IGIMF}\left(M_{\star},SFR,[Fe/H]\right) = \int_{M_{cl,min}}^{M_{cl,max}(SFR)_{\Gamma}} \int_{min}^{max} \int_{\gamma_{min}}^{\gamma_{max}} \int_{M_{ch,min}}^{M_{ch,mx}} P(M_{ch}) P(\gamma) P(\Gamma) \varphi_{IMF}\left(M_{\star},[Fe/H]\right) \int (M_{cl},SFR) dM_{cl} d\Gamma d\gamma$$

SFR dependence: M_{cl,max}=F(SFR)

Metallicity dependence: Γ=G([Fe/H]) γ=H([Fe/H])

> Dib & Basu (2018) Dib (2022)

IMF parameter distributions – Gaussian functions

$$P(\gamma) = \frac{1}{\sigma_{\gamma} \sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{\gamma - \overline{\gamma}}{\sigma_{\gamma}}\right)^{2}\right)$$
$$P(\Gamma) = \frac{1}{\sigma_{\Gamma} \sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{\Gamma - \Gamma}{\sigma_{\Gamma}}\right)^{2}\right)$$
$$P(M_{ch}) = \frac{1}{\sigma_{M_{ch}} \sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{M_{ch} - \overline{M_{ch}}}{\sigma_{M_{ch}}}\right)^{2}\right)$$

 $\sigma_{\Gamma} = \mathbf{a}_{\Gamma} \sigma_{obs\Gamma} \sigma_{\gamma} = \mathbf{a}_{\gamma} \sigma_{obs,\gamma} \sigma_{M_{ch}} = \mathbf{a}_{M_{ch}} \sigma_{obs,M_{ch}}$

For simplicity, vary the a(s) in $a_{\gamma} = a_{\Gamma} = a_{M_{ch}} = a$ unison:

Effects of IMF variations in clusters on the IGIMF

Effects of IMF variations in clusters on the IGIMF

Effects of IMF variations in clusters on the IGIMF

Metallicity dependence

Marks et al. (2012)

Grid in Metallicity-SFR

Comparison to observations - UFDs

Some conclusions

- Variations of the IMF in Galactic clusters
 - Level of variation $\sigma_{IMF} = (\sigma_{\Gamma_P} = 0.6, \sigma_{\gamma_P} = 0.25, \sigma_{M_P} = 0.27)$
 - Necessity to measure variations in and outside the MW

- Accounting for IMF variation is necessary to fit the IGIMF/PDMF of Ultrafaint dwarfs ...and probably for all galaxies at all epochs
- Should have consequences for gas dynamics and chemical enrichement
- Next step: calculate galactic PDMFs