The Milky Way dwarf galaxies view through Gaia

Guillaume THOMAS

Instituto de Astrofísica de Canarias

EXCELENCIA SEVERO OCHOA

Beyond the Milky Way COST MW-Gaia WG1/WG4 Workshop

September 28th 2022

WHAT IS A DWARF GALAXY ?

- Composed of metal-poor, old stars
- Dark matter dominated (M/L > 10)
- Around the MW, SFH tends to be halted 8-10 Gyr ago (e.g. Tolstoy et al. 2009; Brown et al. 2014; Gallart et al. 2015)
- Building-blocks of the L_{\bigstar} -galaxies (hierarchical formation scenario)

See also the recent reviews of Simon 2019 and Battaglia & Nipoti 2022

The Milky Way dwarf galaxies view through Gaia

THE REVOLUTION OF GAIA

Guillaume Thomas

Gaia Collaboration et al. 2018

- 1. RGB+BHB
- 2. Parallax cut
- 3. σ -clipping

Kallivayalil et al. 2018; Massari & Helmi, 2018

Guillaume Thomas

- 1. Get the mean PM from stars selected from spectroscopy or HB
- 2. Select stars from CMD
- 3. σ -clipping on PM

Pace & Li, 2019, Pace et al. 2022

- 1. Pre-selection of candidate member stars from CMD
- 2. Bayesian selection from position & PMs

$$\begin{aligned} \mathcal{L} &= (1 - f_{\rm MW})\mathcal{L}_{\rm satellite} + f_{\rm MW}\mathcal{L}_{\rm MW} \\ \text{with} \quad \mathcal{L}_{\rm satellite/MW} = \mathcal{L}_{\rm spatial}\mathcal{L}_{\rm PM} \end{aligned}$$

Guillaume Thomas

McConnachie & Venn, 2020 a, b, McConnachie et al. 2021 Battaglia & al. 2022

The Milky Way dwarf galaxies view through Gaia

Detection of extra-tidal candidates

• Ca H&K+ Gaia : possible tidal disruption of Boötes I

> • Gaia: extended stellar halos or tidal debris around 6 classical dSph

Longeard et al., 2022

Yang et al, 2022

The Milky Way dwarf galaxies view through Gaia

• Subaru+ MeerKat+ Gaia: Evidence of ram-pressure in WLM

THE REVOLUTION OF GAIA

Gaia Collaboration et al. 2018

Simon 2018; Fritz et al. 2018, Li et al. 2021

Guillaume Thomas

Pace & Li, 2019, Pace et al. 2022

$$\begin{aligned} \mathcal{L} &= (1 - f_{\rm MW})\mathcal{L}_{\rm satellite} + f_{\rm MW}\mathcal{L}_{\rm MW} \\ \text{with} \quad \mathcal{L}_{\rm satellite/MW} = \mathcal{L}_{\rm spatial}\mathcal{L}_{\rm PM} \end{aligned}$$

Guillaume Thomas

2018	2019	2020	2021	2022		
2010	2017					
	*	*		t be		

McConnachie & Venn, 2020 a, b, McConnachie et al. 2021, Battaglia & al. 2022

$$\mathcal{L} = (1 - f_{MW})\mathcal{L}_{satellite} + f_{MW}\mathcal{L}_{MW}$$

with $\mathcal{L}_{sat} = \mathcal{L}_s\mathcal{L}_{CM}\mathcal{L}_{PM}$

McConnachie & Venn, 2020 a, b, McConnachie et al. 2021, Battaglia & al. 2022

$$\mathcal{L} = (1 - f_{MW})\mathcal{L}_{\text{satellite}} + f_{MW}\mathcal{L}_{MW}$$

with $\mathcal{L}_{\text{sat}} = \mathcal{L}_s\mathcal{L}_{CM}\mathcal{L}_{PM}$

The Milky Way dwarf galaxies view through Gaia

The Milky Way dwarf galaxies view through Gaia

McConnachie & Venn, 2020 a, b, McConnachie et al. 2021, Battaglia & al. 2022

Guillaume Thomas

McConnachie & Venn, 2020 a, b; McConnachie et al. 2021; Battaglia & al. 2022; Pace et al. 2022

The Milky Way dwarf galaxies view through Gaia

The Milky Way dwarf galaxies view through Gaia

- 2 categories of potential used to compute the orbits:
 - isolated MW from $0.3-2.5 \times 10^{12}$ M $_{\odot}$ -

e.g. Gaia Collaboration et al. 2018, Fritz et al., 2018; Simon, 2018; Li, Hammer et al., 2021; Battaglia et al. 2022

MW perturbed by massive LMC 1-2.5×10¹¹ M $_{\odot}$ -

e.g. (Kallivayalil et al. 2018), Patel et al. 2020; Battaglia et al.

Legend

- Light MW (0.88 ×10¹² M_{\odot})
- Massive MW (1.6 $\times 10^{12}$ M_{\odot})
- Perturbed MW X

- 2 categories of potential used to compute the orbits:
 - isolated MW from 0.3-2.5 $\times 10^{12}\,M_{\odot}$

e.g. Gaia Collaboration et al. 2018, Fritz et al., 2018; Simon, 2018; Li, Hammer et al., 2021; Battaglia et al. 2022

- MW perturbed by massive LMC 1-2.5 $\times 10^{11}$ M $_{\odot}$

e.g. (Kallivayalil et al. 2018), Patel et al. 2020; **Battaglia et al.** 2022, Correa-Magnus & Vasiliev 2022, **Pace et al. 2022**

Guillaume Thomas

The Milky Way dwarf galaxies view through Gaia

Galactocentrio distance [kpc]

THE BOUNDS, THE STRIPPED AND THE BACKSPLASHED

<u>Unbounds dwarfs</u>

- Eridanus II
- (NGC 6822)
- (Leo T)
- (Phoenix)
- Pisces II

Backsplashed dwarfs

- Leo I
- (Canes Venaci I & II)
- (Draco II)
- (NGC 6822)
- (Leo T)
- (Phoenix)

McConnachie et al. 2021; Battaglia et al., 2022; Pace et al. 2022

THE BOUNDS, THE STRIPPE

AND THE BACKSPLAS

Stripped dwarfs

- **Boötes III**
- **Tucana III**

- (Segue I)

Legend

Light MW (0.88 $\times 10^{12} M_{\odot}$)

Massive MW (1.6 $\times 10^{12} M_{\odot}$)

Fritz et al. 2018; Simon et al 2018; Battaglia et al., 2022; Pace et al. 2022

Perturbed MW Χ

THE BOUNDS, THE STRIPPED

AND THE BACKSPLASHED

Stripped dwarfs

- Boötes III
- Tucana III
- Sgr
- (Crater II)
- (Antlia II)
- (Segue I)
- $(Segue \ 2)$
- (Triangulum II)
- (Canes Venaci I)
- (Hercules)
- (Willman 1)
- (Grus II)
- (Böotes I)
- *(Tucana IV)*
- (Tucana V)
- (Draco II)

Legend

Light MW (0.88 $\times 10^{12}~M_{\odot})$

- Massive MW (1.6 $imes 10^{12}$ M $_{\odot}$)
- X Perturbed MW

The Milky Way dwarf galaxies view through Gaia

Fritz et al. 2018; Simon et al 2018; Battaglia et al., 2022; Pace et al. 2022

• Isolated MW: dwarfs preferentially located near their pericenter

Fritz, et al., 2018; *Simon, 2018; Li, Hammer et al., 2021*

Pb: 3rd Kepler law → mostly near their apocenter

(Probability~ 2 \times 10⁻⁷ for MW \leq 10¹² M $_{\odot}$) Hammer et al. 2020

➡ Bias of detection (missing UFD) Fritz et al., 2018

→ Strong tidal shocks *Hammer et al. 2020*

The Milky Way dwarf galaxies view through Gaia

• Isolated MW: dwarfs preferentially located near their pericenter *Fritz et al., 2018; Simon, 2018; Li, Hammer et al., 2021*

Pb: 3rd Kepler law \longrightarrow mostly near their apocenter (Probability~ 2 × 10⁻⁷ for MW \leq 10¹² M_{\odot}) *Hammer et al. 2020*

- ➡ Bias of detection (missing UFD) Fritz et al., 2018
- Strong tidal shocks *Hammer et al. 2020*
- "Inference" problem: using posterior-weighted uncertainties rather than raw measurements
 Correa-Magnus & Vasiliev 2022

• Isolated MW: dwarfs preferentially located near their pericenter *Fritz et al., 2018; Simon, 2018; Li, Hammer et al., 2021*

Pb: 3rd Kepler law → mostly near their apocenter

(Probability~ 2×10^{-7} for MW $\leq 10^{12}$ M $_{\odot}$) Hammer et al. 2020

- ➡ Bias of detection (missing UFD) Fritz et al., 2018
- → Strong tidal shocks *Hammer et al. 2020*
- "Inference" problem: using posterior-weighted uncertainties rather than raw measurements
 Correa-Magnus & Vasiliev 2022

DWARFS AS GALACTIC SCALE

- Use both dwarfs galaxies and GCs
- Include the perturbation of the LMC
- Treatment of outliers

- Choice parameters for potential of the MW and LMC and for the DF of the tracers
- Backward orbit rewinding integration for t_{reward}
- Compute likelihood of the model with respect to the observation (incl. uncertainties)

Correa-Magnus & Vasiliev 2022

(See also Fritz et al. 2020; Slizewski et al. 2022 for other methods)

Guillaume Thomas

DWARFS AS GALACTIC SCALE

- Use both dwarfs galaxies and GCs
- Include the perturbation of the LMC
- Treatment of outliers

- Choice parameters for potential of the MW and LMC and for the DF of the tracers
- Backward orbit rewinding integration for t_{reward}
- Compute likelihood of the model with respect to the observation (incl. uncertainties)

Correa-Magnus & Vasiliev 2022

(See also Fritz et al. 2020; Slizewski et al. 2022 for other methods)

Guillaume Thomas

Non perturbed by LMC

0.00 Gyr

- LMC
- HydrusI
- ReticulumII
- ---- HorologiumI
- ---- HorologiumII
 - CarinaII
- PhoenixII
- CarinaIII

Kallivayalil et al. 2018; Erkal & Belokurov et al. 2019; Fritz et al. 2019; **Patel et al. 2020;** Pardy et al. 2020; **Battaglia et al. 2022;** Correa-Magnus & Vasiliev 2022, Pace et al. 2022

The Milky Way dwarf galaxies view through Gaia

	Galaxy	t _{ca} [Gyr]	R _{ca} [kpc]	$V_{ca} [km.s^{-1}]$	\mathcal{F}_{link}	T _{esc} [Gyr]			
						<u> </u>			
	Highly parented to the LMC								
	Carina II	-0.97	$12.18^{+14.02}_{-3.33}$	$174.12^{+15.77}_{-35.65}$	1.00	-0.58			
	Carina III	-0.18	$13.74^{+2.60}_{-1.54}$	$164.54^{+11.59}_{-12.12}$	0.99	-0.07			
+SMC	Horologium I	-0.12	$36.35^{+7.94}_{-7.20}$	$113.90^{+33.44}_{-34.31}$	0.84	-0.46			
	Hydrus I	-0.30	$13.09^{+7.14}_{-3.11}$	$146.25^{+14.48}_{-18.54}$	1.00	-0.14			
	Phoenix II	-0.43	$25.99^{+24.83}_{-14.49}$	$123.57_{-47.04}^{+45.76}$	0.90	-0.31			
	Reticulum II	-0.19	$14.69^{+1.21}_{-0.85}$	$155.57^{+7.01}_{-9.30}$	1.00	-0.08			
	Potentially parented to the LMC								
	Horologium II	-0.04	$38.81^{+7.11}_{-6.89}$	$170.06^{+71.39}_{-65.89}$	0.56	-0.43			
	Tucana IV	-0.15	$6.57^{+5.64}_{-2.21}$	$220.88^{+19.99}_{-45.68}$	0.94	-0.06			
	Carina	0.00	$62.27^{+5.67}_{-5.81}$	$148.31^{+10.24}_{-8.86}$	0.25	-2.77			
	Recently captured (<1 Gyr) by the LMC								
	Grus II	-0.34	$25.62^{+4.23}_{-3.33}$	$186.06^{+22.15}_{-30.59}$	0.57	-0.29			

Kallivayalil et al. 2018; Erkal & Belokurov et al. 2019; Fritz et al. 2019; Patel et al. 2020; Pardy et al. 2020; **Battaglia et al. 2022;** Correa-Magnus & Vasiliev 2022, Pace et al. 2022

Kallivayalil et al. 2018; Fritz et al. 2019; Patel et al. 2020; **Battaglia et al. 2022**, Correa-Magnus & Vasiliev 2022, Pace et al. 2022

The Milky Way dwarf galaxies view through Gaia

• Grouped together streams, globular clusters and dwarfs based on Integral of motion space

- Galaxies tend to not be linked to other objects
- ➡ Polar orbits are stable
- ➡ No GCs linked to the LMC/SMC

Malhan et al. 2022

STABILITY OF THE VPOS

- High number of dwarfs located in a plane perpendicular to the disc plane (39/46) Santos-Santos et al. 2020
- 75* 50 < r_{gc} < 100 [kpc] 0 < r_{yc} < 50 [kpc] • Half of MW satellite in 75* 601 60 coronation 45* 45' 30* Santos-Santos et al. 2020; Li et al. 2021; 15 15 lat [deg] lat [deg] Correa-Magnus & Vasiliev 2022 180 Carill 120 120 24c-15 Stable plane • c/a~0.2 -75* -75* lon [deg] lon [deg] 100 < igc < 200 [kpc] 200 < r_{oc} [kpc] 451 451 30 ➡ Proposed that VPOS 15 15' lat [ceg] lat [deg] is a consequence of -120 60 the LMC infall Garavito-Camargo et al. 2021 -60* -6)° -75* -75° lon [deg] lon [deg]

Pawlowski et al. 2013; Fritz et al. 2018; Pawloswki & Kroupa 2019; Santos-Santos et al. 2020; Li et al. 2021; Correa-Magnus & Vasiliev 2022

STABILITY OF THE VPOS

- High number of dwarfs located in a plane perpendicular to the disc plane (39/46) Santos-Santos et al. 2020
- Half of MW satellite in coronation

Santos-Santos et al. 2020; Li et al. 2021; Correa-Magnus & Vasiliev 2022

- Stable plane
- c/a~0.2
 - Proposed that VPOS is a consequence of the LMC infall Garavito-Camargo et al. 2021
 - ➡ Not enough to explain the VPOS (3% of enhancement)

Pawlowski et al., 2021; Correa-Magnus & Vasiliev 2022

Guillaume Thomas

THE REVOLUTION OF GAIA

FINDING NEW GALAXIES

• Gaia helped to discover new galaxies and new disrupted galaxies

Torealba et al. 2019

Smith et al. 2022; Cerny et al. 2022

Guillaume Thomas

Cetus-Palca stream 50 Dist. [kpc] 4030 20 d) 10 -100 50 100 150 -150 -50 0 ϕ_1 [deg] Thomas & Battaglia 2022; *Zhen et al. 2022*

THE REVOLUTION OF GAIA

GAIA: INTERNAL DYNAMICS

- Core of Sgr as residual internal rotation of 4.13 km.s⁻¹ del Pino et al. 2021
- Sgr process a bar
- → Indication of transition from disky dwarf to dSph *Lokas et al. 2014; Gajda et al. 2017*

➡ In agreement with faint branch of the Sgr stream

N ≻ -20 2 -10 2 -2-10 1 2 -21 -2-11 Χ X Ζ

Peñarrubia et al. 2010; Oria et al. 2022

del Pino et al. 2021

The Milky Way dwarf galaxies view through Gaia

GAIA: INTERNAL DYNAMICS

Martínez-García et al. 2021, 2022

- Stronger velocity gradient for galaxy at small distances
 - ➡ Indication of weak tidal stirring effects

- Significant rotation in Carina, Fornax and Sculptor
- All except Carina are pressure supported $(|V_T|/\sigma_V < 1)$
- Slow rotator tend to have: Larger ellipticity - Small distances

CONCLUSION

gaia was <u>crucial</u> for:

- Select stars members of dwarfs
- Find new galaxies
- Mesure the systemic motion
- Mesure the internal dynamics

Helped to answer many scientific questions ... and raised many more

- Origin of the VPOS
- Common origin of galaxies
- Evolution of the dwarf galaxies
- Mesure the mass of the MW and LMC

- Gaia DR4 will give better PMs and better constraint orbital parameters, internal dynamics, ...
- Meanwhile HST+Gaia calibrated PM *del Pino et al. 2022*
- New multiplex spectroscopic (WEAVE, 4MOST, SDSS-V, MOONS, ...) will complement Gaia

The Milky Way dwarf galaxies view through Gaia

Complements to Battaglia & al 2022

http://research.iac.es/proyecto/GaiaDR3LocalGroup

② 2022 Instituto de Astrofísica de Canarias • IAC

The Milky Way dwarf galaxies view through Gaia