Potential of Gaia to constrain Primordial Black Holes using astrometric microlensing [arXiv 2208.14460]

COST MW-Gaia WG1/WG4 Workshop

Himanshu Verma Ph.D. 4th year, Department of Physics IIT Bombay, India Ph.D. Supervisor: Prof. Vikram Rentala

Sep 28, 2022

eesa

Credit: B. Holl (University of Geneva, Switzerland), A. Moitinho & M. Barros (University of Lisbon)

Goal

- **1. Gaia Telescope:** More than a *billion trajectories* of galactic and extra-galactic sources.
- **3. Astrometric Microlensing:** AML may alter the observed apparent trajectories of the sources.
- **5. AML signal rate:** Prediction of number of trajectories containing AML signals due to PBHs.

- **2. Primordial Black Holes:** Primordial Black Holes one of the candidate of *Dark Matter.*
- **4. AML signals of PBHs:** PBH induced shift in the observed trajectories of Gaia.
- **6. Projected constraints on PBH parameters:** Under the null observation of the AML signals due to PBHs.

7. Summary: Summaries the key results and our learnings from the presented analysis.

Credit: ESA/Gaia/DPAC, CC BY-SA 3.0 IGO

Gaia Introduction Gaia Error Model Gaia eDR3 catalog A space based telescope surveying all sky to observe the trajectories of more than a billion sources 1. Gaia **Telescope:**

3.

Each telescopic arm observes each patch in the sky once in ~1 month

It would provide 35 individual angular positions of more than a billion sources

With an accuracy as small as 0.076 mas for stars brighter than 14 mag.

Gaia Introduction Gaia eDR3 catalog Modelling of uncertainty per epoch in the angular position

2. Primordial Black Holes:

3. Astrometric Microlensing:

4. AML signals of PBHs:

5. AML signal rate:

8. Projected constraints on PBH parameters:

Uncertainty in the angular position "only" depends upon how bright a source is i.e. apparent magnitude (m_G)

We took an empirical fit to the observed uncertainty according to 34 months of observation Gaia Introduction Gaia Error Model Gaia eDR3 catalog Early Data Release 3: # of stars distributed over the characteristics of stars

 m_G (mag)

 $D_s(kpc)$

2. Primordial Black Holes: stars of # -100 ò 100 3. Astrometric Microlensing: (deg) 5 4. AML signals of PBHs: -50 50 0 (kpc) 10 5. AML signal 0 10⁻¹ rate: 10-2 100 17.5 17.5 8. Projected (be 15.0 12.5 10.0 15.0 106 constraints on 12.5 PBH 10.0 10 лg 7.5 parameters: 7.5 -10 10⁻¹ 10⁰ 10¹ 10² 10³ 10 15 20 -100 100 10-3 10-2 5

 δ (deg)

 α (deg)

Total 1.43 billions sources out of 1.8 billion stars

Having characteristics: Right Ascension Declination Distance (1/parallax) Apparent magnitude

Apparent distortion in the trajectory of these sources due to Primordial Black Holes

9. Summary:

1. Gaia Telescope:

PBH and Dark Matter Collapse of excess density in the early universe: Dark Matter Candidate

8. Projected constraints on PBH parameters:

"Astrometric Microlensing of Primordial Black Holes with Gaia"

9. Summary:

2. Primordial

Black Holes:

2.0

1.8

Magnification

1.4

1.2

 Lens (L) Source (S) Centroid (I_c) 3. Astrometric **Microlensing:** $|_{c}$ (mas) θ_0 4. AML signals θ of PBHs: -1 --2 5. AML signal -3 rate: -3 -2 -10 $\theta_{\rm v}$ (mas) 8. Projected constraints on (mas) 0.5 PBH parameters: \triangleleft 0.0 -3 -2 $^{-1}$ θ_x (mas) 9. Summary:

Photometric Microlensing (PML): Apparent brightening of a source due to bending of light

Astrometric Microlensing (AML): Apparent shift in the angular position of a source due to bending of light

Apparent shift depends upon the **angular separation** between the source and the lens

Apparent shift also depends upon **Einstein** Angle

$$\theta_E \approx 2.854 \text{ mas}$$

$$\left| \frac{M}{10 \text{ M}_{\odot}} \frac{10 \text{ kpc}}{D_s} \left(\frac{D_s}{D_l} - 1 \right) \right|$$

AML event duration Types of AML signals Detection criteria Duration for which star remain in the sensitive area of detection

$$egin{aligned} \langle t_e
angle =& rac{\pi heta_E(u_+^2-u_-^2)}{2u_+\mu}, \ &=& rac{\pi D_l heta_E}{v} rac{ heta_E}{\sigma_a(m_G)} \sqrt{rac{ heta_E^2}{\sigma_a(m_G)^2}-8} \ &rac{ heta_E}{\sigma_a(m_G)} + \sqrt{rac{ heta_E^2}{\sigma_a(m_G)^2}-8}, \end{aligned}$$

 $\langle t_e
angle (M,\,D_l,\,v\,;\,D_s,\,m_G)$

9. Summary:

ArXiv: 2208.14460

Assumptions and PBH Exclusion A new exclusion on PBH parameters potentially set by Gaia

A fraction f of Dark Matter is PBHs

2. Primordial Black Holes:

3. Astrometric

Microlensing:

4. AML signals

5. AML signal rate:

of PBHs:

Monochromatic Mass function of PBHs with parameter M

Dark matter distribution is assumed to be NFW profile

All PBHs are moving with speed v=200 km/sec relative to the stars in Milky Way

Rectilinear motion of stars

Uniform sampling of trajectories of Gaia

8. Projected constraints on PBH parameters:

9. Summary:

Only Along scan direction error is used

Exclusion is solely based on Gaia astrometric measurements only

A new exclusion on PBH parameters potentially set by Gaia

2. Primordial Black Holes:

3. Astrometric

Microlensing:

4. AML signals

5. AML signal

8. Projected constraints on PBH parameters:

rate:

of PBHs:

- Predicted number of Astrometric Microlensing events expected to be observed by Gaia due to PBHs.
- Two different classes of detectable lensing events: IDLEs and LDLEs.
 - Distribution of lensing events over the Gaia eDR3 catalog.
 - Gaia is sensitive to PBHs with mass between 0.4 M_\odot to $~5\times10^7~M_\odot$ with peak sensitivity to PBH masses of 10 M_\odot with fraction f =3 $\times10^{-4}$

9. Summary:

Thank You

of PBHs:

rate:

PBH

Slides:

Figure 14. Maximum astrometric shift $\delta_{c,max}$ vs. the Einstein crossing time $t_{\rm E}$. We assume blending between the lens and source when calculating $\delta_{c,max}$. The solid line denotes the achievable astrometric precision of ~ 0.2 mas using the Keck laser guide star adaptive optics system (Lu et al. 2016). The dotted line denotes anticipated astrometric precision achievable in the next decade (e.g., ~0.05 mas, using WFIRST or the Thirty Meter Telescope). The points correspond to microlensing events in the Mock EWS simulation.

